Palaa testien linkkisivulle

trig_names: sine of x plus cosine of y plus tangent of z plus secant of alpha, plus cosecant of phi, plus cotangent of phi

sin x + cos y + tan z + sec α + csc ϕ + cot φ

hyperbolic_trig_names: hyperbolic sine of x, plus hyperbolic cosine of y, plus hyperbolic tangent of z, plus hyperbolic secant of alpha, plus hyperbolic cosecant of phi, plus hyperbolic cotangent of phi

sinh x + cosh y + tanh z + sech α + csch ϕ + coth φ

inverse_trig: inverse sine of x

sin - 1 x

trig_squared: sine squared of x

sin 2 x

trig_cubed: tangent cubed of x

tan 3 x

trig_fourth: the fourth power of, secant of x

sec 4 x

trig_power_other: the n minus 1 power of, hyperbolic sine of x

sinh >n-1 x

simple_log: log x

log x

normal_log: the log of, open paren x plus y, close paren

log ( x + y )

simple_log_with_base: the log base b of x

log b x

normal_log_with_base: the log base b of, open paren x plus y, close paren

log b ( x + y )

simple_ln: natural log x

ln x

normal_ln: the natural log of, open paren x plus y, close paren

ln ( x + y )

normal_ln_terse: l n of, open x plus y close

ln ( x + y )

simple_ln_terse: l n x

ln x

explicit_function_call_with_parens: t of x

t ( x )

explicit_times_with_parens: t times x

t ( x )

explicit_function_call: t of x

t x

explicit_times: t x

t x

no_times_binomial: x y

x y

times_following_paren: 2 times 3

2 ( 3 )

times_preceding_paren: 2 times 3

( 2 ) 3

no_times_sqrt: the square root of eigh; the square root of b; is equal to, the square root of eigh b end root,

a b = a b

no_parens_number: 25 times x

( 25 ) x

no_parens_monomial: b x y

b ( x y )

no_parens_negative_number: 2 plus negative 2

2 + ( 2 )

no_parens_negative_number_with_var: negative 2 x, plus 1

( 2 x ) + 1

parens_superscript: open paren 2 x close paren squared

( 2 x ) 2

no_parens_fraction: 2 plus 1 half

2 + ( 1 2 )

parens_interval_open_open: the open interval from c to d

( ( c , d ) )

parens_interval_closed_open: the closed open interval from c to d

[ [(] c , d ) )

parens_interval_open_closed: the open closed interval from c to d

( ( c , d ] ]

parens_interval_closed_closed: the closed interval from c to d

[ [(] c , d ] ]

parens_interval_neg_infinity_open_open: the open interval from negative infinity to d

( - , d ) )

parens_interval_neg_infinity_open_closed: the open closed interval from negative infinity to d

( - , d ] ]